L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo. Virtual Element Implementation for General Elliptic Equations.
L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo. Mixed virtual element methods for general second order elliptic problems on polygonal meshes. ESAIM: M2AN, 50(3):727–747, 2016.
L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo. Virtual element method for general second order elliptic problems on polygonal meshes. Mathematical Models and Methods in Applied Sciences, 26(04):729–750, 2016.
L. Beirão da Veiga, C. Lovadina, and G. Vacca. Divergence free virtual elements for the stokes problem on polygonal meshes. ESAIM: M2AN, 51(2):509–535, 2017.
S. Berrone, S. Scialò, and G. Teora. The mixed virtual element discretization for highly-anisotropic problems: the role of the boundary degrees of freedom. Mathematics in Engineering, 5(6):1–32, 2023.
S. Berrone, S. Scialò, and G. Teora. Orthogonal polynomial bases in the mixed virtual element method. Numerical Methods for Partial Differential Equations, 40(6):e23144, 2024.
S. Berrone, G. Teora, and F. Vicini. Improving high-order vem stability on badly-shaped elements. Mathematics and Computers in Simulation, 216:367–385, 2024.
S. Berrone, A. Borio, G. Teora, and F. Vicini. GEDiM: GEometry for DIscretization MEthod library, April 2025.
S. Berrone, A. Borio, G. Teora, and F. Vicini. Polydim: A c++ library for polytopal discretization methods, 2025.
F. Dassi and L. Mascotto. Exploring high-order three dimensional virtual elements: Bases and stabilizations. Computers & Mathematics with Applications, 75(9):3379–3401, 2018.
Lorenzo Mascotto. Ill-conditioning in the virtual element method: Stabilizations and bases. Numerical Methods for Partial Differential Equations, 34(4):1258–1281, 2018.